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ABSTRACT

The problem of optimally removing a set of vertices from a graph to minimize the size of the largest resultant
component is known to be NP-complete. Prior work has provided near optimal heuristics with a high time
complexity that function on up to hundreds of nodes and less optimal but faster techniques that function on up to
thousands of nodes. In this work, we analyze how to perform vertex partitioning on massive graphs of tens of
millions of nodes. We use a previously known and very simple heuristic technique: iteratively removing the
node of largest degree and all of its edges. This approach has an apparent quadratic complexity since, upon
removal of a node and adjoining set of edges, the node degree calculations must be updated prior to choosing the
next node. However, we describe a linear time complexity solution using an array whose indices map to node
degree and whose values are hash tables indicating the presence or absence of a node at that degree value. This
approach also has a linear growth with respect to memory usage which is surprising since we lowered the time
complexity from quadratic to linear. We empirically demonstrate linear scalability and linear memory usage on
random graphs of up to 15000 nodes. We then demonstrate tractability on massive graphs through execution on
a graph with 34 million nodes representing Internet wide router connectivity.
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1. Introduction

The graph separator problem attempts to bisect a graph G into
components containing approximately equal numbers of nodes
by removing no more than k edges or nodes. This problem
is NP-complete [1] [2]. In this work, we focus on a more
general variant where we remove up to k vertices and attempt
to minimize the size of the largest component. More formally,
consider a graph G where we remove up to k vertices and let
S be the set of removed nodes. We can then represent our
optimization problem as follows:

min (max{|C|; C is a cluster of G\S 1
ng,|ls|gk( x{|C|; Cisaclu \S}) (1

Since this can be used to solve the graph separator problem,
it is NP-hard and it follows then that any resulting solutions will
be approximate heuristics (or perform exhaustive exponential
complexity searches).

Prior work has provided near optimal heuristics with a high
time complexity that function up to hundreds of nodes and less
optimal but faster techniques that function on up to thousands
of nodes. In this work, we analyze how to perform vertex
partitioning on massive graphs of tens of millions of nodes. We

use a previously known and very simple heuristic technique:
iteratively removing the node of largest degree and all of its
edges. This approach has an apparent quadratic complexity
since, upon removal of a node and adjoining set of edges, the
node degree calculations must be updated prior to choosing
the next node. However, we describe a linear time complexity
solution using an array with embedded hash tables where the
array indices map to node degree. This approach also has a
linear growth with respect to memory usage which is surprising
since we lowered the time complexity from quadratic to linear.
We empirically demonstrate linear scalability and memory usage
on random graphs of up to 15000 nodes. We then demonstrate
tractability on massive graphs through execution on a graph with
34 million nodes representing Internet wide router connectivity.

Our motivation comes from applications of computer secu-
rity, although the approach is generally applicable to a variety of
domains. For example, a graph may represent a computer net-
work (either physical or logical) and the removed nodes could
be those hardened in order to create internal defensive barriers.
Alternately, the removed nodes could represent targets of an
attacker in calculations to split a network up into components.
We have found such network graphs to typically have many
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nodes of small degree and few nodes of high degree. These char-
acteristics aid many of the heuristic approaches, including ours.
The approach studied in this paper (which iteratively removes
nodes with highest degree) has previously been proposed by
Albert et. al. [3] and Reuven et. al. [4] as a method to assess the
vulnerability of networks to targeted attacks and by Madar et. al.
[5] as a strategy for choosing nodes to immunize in a network.
This latter approach was also used by Tong et. al. [6] although
a different heuristic was employed for vertex identification.

The rest of the work is organized as follows. Section 2 dis-
cusses our heuristic in more detail and present several naive
algorithms. Section 3 provides our linear time vertex partition-
ing algorithm. Section 4 walks through an example execution.
Section 5 provides an empirical analysis, section 6 discusses
prior work, and section 7 concludes.

2. Methods and Materials

The heuristic we are using to perform vertex partitioning is to
iteratively extract a highest degree vertex from a graph, G. We
denote G as having n vertices and m non-loop edges with the
degree of each node being calculated ignoring any self-loops
(since self-loops have no bearing on the connectivity of G). We
iteratively remove nodes until some set number, &, of vertices
are extracted with k < m/2 (were m/2 highest degree nodes
removed, all remaining nodes would have degree 0). After
extracting a vertex, we recalculate any affected node degrees
(decrementing each of them). The rationale behind the approach
is that removal of a highest degree node will remove the most
number of edges and thus intuitively will have a better chance
of disconnecting a graph compared to removing a lower degree
node with fewer edges.

An obvious implementation of this heuristic is as follows.
Traverse all nodes and record the node of highest degree. Re-
move the chosen node from the graph and repeat the procedure.
This approach is simple and requires no data structure outside
of G itself, however it executes in quadratic O(n* +m) time and
hence is not competitive for large graphs of millions of nodes.
Note that its memory usage is linear, O(n+ m). For the rest of
this paper we will refer to this approach as the Quadratic Scan
(QS) algorithm.

Given the quadratic time complexity of QS, for large graphs
one might just use the initial degree values to iteratively extract
nodes (without ever updating the degree of any nodes as a re-
sult of edges being removed), resulting in an O(nlogn) time
complexity and an O(m) memory complexity solution. The al-
gorithm would be linear except for a single operation to sort the
nodes by degree. Empirically, this is a very fast operation and
thus the approach operates as if it were linear even on graphs
of millions of nodes. However, we show empirically that this
simplified approach often produces less optimal solutions (de-
pending upon the type of graph under analysis). For the rest of
the paper, we will refer to this simplified approach as the Static
Degree (SD) algorithm.

3. Linear Time and Memory Algorithm

While apparently quadratic, our vertex partitioning heuristic can
be implemented as a linear algorithm in both time and memory
(as we have proposed in this paper). The memory consumption is
primarily in the form of O(d) hash tables where d represents the
maximum degree in the graph (again ignoring self-loops). The
overall memory usage is thus bounded by O(n+m+d). Note
that, empirically, significantly few hasher tables are often used.
To achieve the linear runtime, we must find the highest degree
node, remove it, and update the degree values of its neighbors
in constant time. Thus, for the rest of the paper we refer to
our approach as the Constant Update (CU) algorithm. Note
that while the processing of a removed node can be considered
constant, any particular removal may include accessing up to
n nodes. However, when all such updates are amortized over
the life of the full algorithm we find that this operation adds at
most an O(m) cost to the entire algorithm. We can then vertex
partition the graph using any number of nodes in O(n+m) linear
time.

3.1 Narrative Description

To implement our approach, we create an array of hash tables
where the array indices refer to node degree cardinality. More
specifically, we create an array L where the indices of L map to
degree values. Thus, L[5] maps to the set of nodes of degree 5.
Since no node can have a degree greater than n — 1 (we ignore
self-loops), the length of L is n — 1. At a particular array index
(e.g., L[23]), we store the names of all the nodes with that degree
using a hash table. Thus, we have one hash table per active node
index (where we define an ‘active’ index to be one where the
index maps to at least one node of that degree). Inactive indices
in L are not given a hash table and are simply assigned a default
value of 0 (optimizing the memory usage). To enter a node into
a hash table, we use the node name as the key and use a default
Boolean ‘True’ for the value. Thus, the purpose of the hash table
is not to look up values for keys (since the values are always just
“True’) but instead to enable one to find a node entry in constant
time if one already knows the node’s degree.

From a given graph G, we can create L in linear time. We
first create an array L of size n — 1 and set the value of all the
fields to 0. We then traverse the set of nodes in G. At each node
x, we extract the degree value, d,, and use that as the appropriate
index in L. If the value of L[d,] is 0, we replace it with an empty
hash table. We then enter the node name into the hash table in
constant time.

We next traverse L sequentially from the highest index to
the lowest. At each index i, we check to see if a hash table
exists. If one exists, then we extract the set of keys in constant
time. These keys will be the names of the highest degree nodes.
We arbitrary choose one node, x. We remove it from G and
then update L to reflect the new state of G in constant time
(this procedure is described below). We iteratively continue this
process of identifying nodes to remove until we have removed
k nodes, at which point the algorithm terminates. Note that
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between node removals, the set of keys designating the nodes
of highest degree must be regenerated since the set of nodes of
highest degree can be altered by the removal of a node.

The last thing that remains is to show how to update L in
constant time to reflect the removal of a node x from G. For
each neighbor of x with degree d, we need to remove it from
the hash table at L[d] and add it to the hash table at L[d — 1]. If
a hash table does not exist at L[d — 1] we first create an empty
one. If removal of the neighbor from the L[d] hash table empties
that table, we delete it and replace it with a O (i.e., in this case
L[d]=0 which signifies that no nodes of degree d currently exist
in G). Lastly, we remove the node x from G and any associated
edges. A single removal of a node x from G then appears to
take O(n) time because a node may have up to n — 1 neighbors.
However, the number of neighbors over the life of the algorithm
cannot exceed the number of edges, m. Thus, this contributes
an additive O(m) term to the overall complexity and the updates
for a set of neighbors for any particular x can be considered a
constant.

Reviewing the entire execution cost, initial creation of L
takes O(n) time. Traversing L from the highest index to lowest
index while identifying nodes of highest degree takes O(n).
Removing a node from G while updating L to reflect the new
state of G takes constant time with respect to evaluating n but
adds an amortized cost of O(im) to the entire algorithm. This
makes the runtime linear, bounded by O(n+ m).

3.2 Pseudo-code Presentation
We now provide pseudo-code (heavily based on Python) to
specify the algorithm’s execution. For space considerations and
to simplify the presentation, we omit the code that optimizes
memory usage (i.e., when to create and delete hash tables). Thus,
this pseudo-code creates one hash table per index in L for the
life of the algorithm. Our actual Python code only creates hash
tables for indices that correspond to the actual degree values of
nodes and then it dynamically creates and deletes hash tables as
the algorithm removes nodes and adjusts node degree values.
The pseudo-code is provided in Figure 1. The input parame-
ters G and k represent the initial graph and the desired number
of removed nodes respectively. L is our primary data structure
as described in section 4.1 that is an array with embedded hash
tables. S is a list of the names of the removed nodes. We use [ ]
to denote the creation of an empty array and { } to denote the
creation of an empty hash table. ‘current’ is the monotonically
decrementing variable denoting the array index in L that we are
currently processing.

3.3 Example Linear Execution

We now trace through the execution of our linear algorithm on
a small toy graph using a k value of 3. In tracing through our
walk through, keep in mind how the algorithm allows each node
removal step (finding node of highest degree, removing it and
associated edges, and updating the data structure to reflect the
new graph) to be done in constant time (noting that the full
algorithm amortized analysis adds an additive O(m) factor).

def Linear Time Vertex Partitioning(G,k):
1 L=[]

2 S=1]

3 for each node in G: L.append({})

4 for each node in G:

5 deg=degree (G.node)

& L[deg] [node]=Trus

7 current=G.number of nodes()-1

8 while len(S)<k:

9 while len(L[current].keys())==0: current-=1
10 z &

11

12

13 5. appe

14 neighbors=G.neighbors (choice)
15 for neigh in neighbors:

1¢ ndegree=degree (G, neigh)
17 i te (L[ndegree] [neighl])
18 gree-1] [neigh]=True
19 G.re _node (choice)

20 del (L[current] [choice])

21 if len(S)==k: break out of while loop

~nA

22 keys=L[current].keys ()
23 return S

Figure 1. Python Based Pseudo-code for Linear Time Vertex
Partitioning Algorithm.

Figure 2 shows the initial graph and our construction of
the starting data structure (the array L with embedded hash
tables). The check mark indicates which degree index in L is
being evaluated next to choose a node to remove. The column
of numbers from O to 4 are the array indices of L. The letters
followed by the ‘— >’ sign pointing to the value “True’ represent
the hash tables embedded in L (at most one per array index).

410
a b
./3 f->True
2 | a,d->True d f
1| b,c,gh,i->True gl h /i
0|0

Figure 2. Initial toy graph and data structure construction.

Based on Figure 2, our algorithm chooses node e to remove
first. The resulting graph and updated L are shown in Figure
3. Note how the removal of ¢ caused ¢, d, g, and h to be
decremented to a lower index in L.

Based on Figure 3, our algorithm next chooses node f to
remove because no other nodes with degree 3 exist (and this
is the degree index we are currently processing). This action
decrements c, &, and i and results in the updated graph and array
L as shown in Figure 4. Finally, our algorithm evaluates index
2 in L and finds two nodes of that degree. For the final node
removal it arbitrarily chooses one (say d) causing the final state
as shown in Figure 5.
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410
a b
/3 f->True
2 | a,d->True G f
b,c,g,h,i->True gl h /i
0|0

Figure 3. Updated graph and data structure with e removed.

410 b c
a
3|0 ®
o2 | a,d->True d
’ h
1| b,g->True g o 'e
0 | ¢,h,i->True

Figure 4. Updated graph and data structure with e and f re-
moved.

410 b c
a
0 o—e o
2|0
= h i
/1| ab->True 8. e ‘o
0| c,gh,i->True

Figure 5. Final graph and data structure state with d, e, and f
removed.

Not demonstrated in this example is how the algorithm will
skip over an array index if there is no associated hash table. Also
not shown is how the algorithm may process a particular index
multiple times if there are several candidate nodes for removal
of the same degree. After each node removal at a particular
degree, some of the candidate nodes may drop off the candidate
list if they have an edge to one of the previously removed nodes.

4. Results and Discussion

In the following sections, we examine our proposed approach
from several angles. For this, we evaluate all three algorithmic
approaches: our linear time constant update (CU) approach, the
naive quadratic scan (QS) implementation, and the O(nlogn)
time static degree (SD) method. We also include a between-
ness algorithm from [7] (henceforth, the ‘BT’ algorithm) that is
highly effective, however, we show that its runtime increases at
a large quadratic rate.

First, we examine the effectiveness of our partitioning scheme
on a number of random graph models, examining graphs of up
to 15000 nodes (scaling both the graph size and vertex parti-

tioning cutset size) using both our CU method and the related
SD method. We show that the CU method reliably produces
better partitions. We next verify the improvement in speed of
our linear time implementation of CU over the naive QS method
(which produces identical partitions). We also include the SD,
QS, and betweeness algorithms for comparison. We follow this
with an analysis of CU, SD, and QS memory usage on graphs up
to 1 million nodes. Finally, we apply our method to an extremely
large real-world graph of 34 million nodes representing Internet
wide router connectivity. We show that the presence of high
number of leaf nodes can damage the performance of our CU
approach relative to the SD method, however a simple modifica-
tion to the CU approach, which ignores leaf nodes, restores the
advantage of the CU approach while also improving the overall
quality of the cut.

4.1 Algorithm Partitioning Effectiveness

Here we examine the quality of the cuts produced by the CU
algorithm over a range of graph sizes and types, also comparing
to those produced by the SD algorithm. We show that, across
several classes of random graphs, for a range of graph sizes
and separator set sizes, the CU algorithm reliably outperforms
the SD algorithm, in many cases by a substantial margin, at a
relatively modest cost in time. Note that graphs of the size we
consider here may be tractable with other existing tools but we
are focusing here only on approaches that operate empirically at
linear time complexity (i.e., those that massively scale).

We considered the following classes of random graphs:

e Barabasi-Albert preferential attachment model with m = 1
(tree) and m = 3.

e Erdos-Renyi graph with link probability M, such

as to produce connected graphs with high probability.

e Newman-Watts-Strogatz small-world graph with 2 neigh-
bors and link probability 0.3

All experiments were conducted by drawing 50 random
graphs of the specified size and type (using the NetworkX library
[7]), applying the CU and SD methods to each of them, and
recording the timing results as well as the size of the largest
connected component. For each graph type, we show the size
of the largest connected components for a range of graph sizes
when 25% of the nodes are removed. Also for each graph type,
we show a graph of 15000 nodes when from 1% to 100% of
the nodes are removed. The points indicate the mean across all
samples.

Figure 6 and Figure 7 show the results for random trees
(Barabasi-Albert preferential attachment model with m = 1).
In Figure 6, as we increase the cut size for a tree of 15000
nodes, the CU algorithm provides smaller largest-connected-
component sizes. When the cutset size exceeds 4500 nodes,
the results of the two algorithms converge. In Figure 7, as the
graph size is increased while removing 25% of the nodes, the
CU algorithm shows a consistent advantage.
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Figure 6. Largest Connected Components for Variable Cutset
Sizes, Barabasi-Albert m=1 Graphs.
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Figure 7. Largest Connected Components for Variable Graph
Sizes, Barabasi-Albert m=1 Graphs.

Figure 8 and Figure 9 show the results for random scale
free graphs (Barabasi-Albert preferential attachment model with
m = 3). In Figure 8, we see similar results as with the random
trees with the CU algorithm having an advantage at smaller
cutset sizes and with the results of the two heuristics converging
at higher cutset sizes (above 8250). In Figure 9, we see the
CU method performing extremely well regardless of graph size
while the SD method has increasingly worse performance as the
graph size increases.

Figure 10 and Figure 11 show the results for random Erdos-
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Figure 8. Largest Connected Components for Variable Cutset
Sizes, Barabasi-Albert m=3 Graphs.
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Figure 9. Largest Connected Components for Variable Graph
Sizes, Barabasi-Albert m=3 Graphs.

Renyi graphs. In Figure 10, we see both heuristics perform-
ing similarly at both small and large cutset sizes with the CU
approach showing a distinct advantage for large swath of mid-
range cutsizes (cutsizes from 3000 to 14000). The difference
between the two algorithms is greatest between cutsizes of 7000
to 12000 nodes. In Figure 11, we see the CU and SD algorithms
demonstrating almost identical performance. This is because
the cutset size of 25% was just within the region where the
algorithms performed similarly. If the cutset size percentage is
increased, the CU algorithm will outperform the SD algorithm
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Figure 10. Largest Connected Components for Variable Cutset
Sizes, Erdos-Renyi Graphs.
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Figure 11. Largest Connected Components for Variable Graph
Sizes, Erdos Renyi Graphs.

(not shown). Note that the equal performance of both algorithms
here shows that use of the CU approach does not guarantee bet-
ter results but, in our experiments on synthetic data, it always
performed at least as well as the SD approach.

Figure 12 and Figure 13 show the results for random Newman-
Watts-Strogatz graphs. The results here were very similar to
those of the Barabasi-Albert (m = 3) graphs. However, in Figure
12 the advantage of the CU approach at lower cutsizes is more
pronounced. Likewise, in Figure 13 the disadvantage of the SD
approach is also more pronounced.
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Figure 12. Largest Connected Components for Variable Cutset
Sizes, Newman-Watts-Strogatz Graphs.
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Figure 13. Largest Connected Components for Variable Graph
Sizes, Newman-Watts-Strogatz Graphs.

In summary, in the case of small world and power-law type
graphs, the CU method produces a separator that is substantially
better than the SD method, while in the case of the Erdos-Renyi
graph the advantage is less pronounced (but it depends on the
cutset size used).

4.2 Execution Time Growth Rates

In this section we examine the growth rate of the execution time
for SD, CU, QS, and BT algorithms. Of particular interest is
the improvement from the QS algorithm to our CU algorithm
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(which produce the exact same answers). SD and BT were
included for comparative purposes.

To test execution time, we performed two experiments (shown
in Figure 14 and Figure 15). Figure 14 examines the Barabasi-
Albert graphs with m=3 from 1000 to 15000 nodes, finding the
best separator using 25% of the nodes. Timing results for the
other graph types were substantially similar (not shown). Figure
15 performs the same analysis, but on a much larger scale for
just the linear time complexity algorithms; it covers graphs from
100000 to 1000000 nodes.
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Figure 14. Execution Times for Variable Graph Sizes, Barabasi-
Albert m=3 Graphs.

20
15
v
g 10 Algorithm
= A CU
® SD

0

g 7 & g

Graph_size

Figure 15. Linear Complexity Algorithm Execution Times for
Variable Graph Sizes, Very Large Barabasi-Albert m=3 Graphs.

Figure 14 clearly shows the quadratic nature of both the QS
and BT algorithms. The BT algorithm took 393 seconds for
just 9000 nodes while the QS algorithm took 125 seconds for
just 15000 nodes. The CU and SD algorithms appear almost
constant here, taking less than .2 seconds for all data points.
Note that the CU data line hugs the x-axis, underneath the SD
data line, and is not visible.

Figure 15 enables us to better see the execution time growth
rate of the CU and SD algorithms. As expected from the prior
theoretical analysis, the data appears linear with the CU algo-
rithm using more time than the SD algorithm by a constant
factor. Note that the quadratic execution time of the QS and BT
algorithms prohibited us from executing them on these larger
graph. We tried executing the BT algorithm with sampling pairs
of nodes on which to calculate betweenness in order to improve
the runtime, but this doesn’t eliminate the quadratic nature of the
algorithm and causes a reduction in effectiveness (not shown).

4.3 Memory Growth Rates

We now analyze the memory usage of the two algorithms that
scale to large graphs: CU and SD. For this, we execute both
algorithms on graphs from 100000 to 1000000 nodes using the
Barabasi-Albert m = 1, Barabasi-Albert m = 3, and the Watts-
Strogatz graphs. We didn’t include the Erdos-Renyi graphs
because, for graphs of this size, the random graph generator
required excessive resources.

Figure 16 provides the results, showing empirically the ex-
pected linear memory growth. Surprisingly, for all graph types
the CU algorithm uses almost the same amount of memory as
the SD approach. This means that the data structures used by
CU are empirically very efficient resulting in the majority of the
memory usage simply being the graph itself.
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Figure 16. Memory Usage for Linear Time Complexity Algo-
rithms.
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4.4 Execution on Massive Graphs

To evaluate our approach on massive graphs, we obtained router
interconnectivity data from the Center for Applied Internet Data
Analysis (CAIDA) consortium [8] for 2007, and constructed an
undirected graph depicting the approximate routing structure
of the internet. The resulting graph had 34386931 nodes and
35799372 edges. The primary purpose of this experiment is to
check the runtime of the CU and SD algorithms at scale. We
also report on partitioning effectiveness.

This graph has the unusual feature of having a large number
of very large star subgraphs with a majority of the nodes being
leaves (both within each star subgraph and for the graph at
large). This may explain why the SD algorithm outperforms the
CU algorithm here when identifying large cutsets (e.g., 160000
nodes). The stars are problematic for the CU algorithm because,
instead of choosing nodes that will break apart the infrastructure
of the graph, it is biased towards choosing large stars. When a
star subgraph is chosen and processed, this removes edges to
important infrastructure nodes (the edges that connected the star
to the rest of the graph). This removal of ‘infrastructure’ edges
then biases the CU algorithm against choosing infrastructure
nodes and towards choosing more star subgraphs. To test our
theory that the star subgraphs limit CU performance with large
cutsets, in this experiment we also use a variant on the CU
algorithm that counts only non-leaf nodes when choosing the
next node for the cutset. We call this variant LCU.

6000
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2000 J LCU

SD
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O oD s & ) ) o
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Ry & {:} \\\'1« 7)9:} {("‘JD
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Figure 17. Timing Results on CAIDA Graph.

Figure 17 shows the results of our timing tests. The signifi-
cant crests and troughs are a result of this being an experiment
on a single large graph (each datapoint represents a single mea-
surement and not a mean of many measurements). Despite the
jitter and the single large outlier, one can see that regardless of
the separator size, processing time is approximately constant
within the two methods. This is due to the fact that traversing
the graph and building the associated data structures to enable
analysis consumes most of the processing time for both heuris-

tics. Thus, varying the cutsize measured does not significantly
change the execution time. In comparing the two heuristics, the
SD method continues to appear to enjoy a slight and consistent
advantage with respect to speed. From a theoretical point of
view this is surprising, as the SD algorithm is O(nlogn) and
the CU algorithm is O(n). Apparently, the nlogn cost associ-
ated with the SD algorithm sorting the degree values of the 34
million nodes is not sufficient to enable the CU algorithm to
demonstrate a smaller execution time.
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Figure 18. Largest Connected Components for CAIDA Graph.

Figure 18 shows the effectiveness of CU, SD, and LCU on
the CAIDA Internet topology graph. The results are virtually
identical up to a cut size of 10240 at which point the LCU al-
gorithm begins to show a distinct advantage. However, the SD
algorithm converges with the LCU algorithm at a cutsize of
163840. The CU algorithm lags in performs for high cutsizes,
likely due to the prevalence of very large stars in the graph as
discussed previously. This result is not surprising as most ap-
proximation algorithms work with variable effectiveness given
the nature of the graph to be analyzed. No one heuristic will
guarantee the best result on all input data.

5. Prior Work

The general problem of removing either edges or vertices to
disconnect a graph (for different purposes) has largely been
studied in the graph theory literature under different names:
graph partitioning [9], vertex/edges separation [10], [11], [12],
vertex/edge cut [13], graph bisection [14], p-separator problem
[15], and p-way vertex cut [16]. A common observation is that
the problem is NP-hard [1] [2] in general and most of the effort
has been devoted to finding good heuristic algorithms.

Our formulation of the problem (find a subset of vertices of
size at most k whose removal minimizes the size the maximum
component in the remaining graph) can be related to the p-
separator problem [15] which can be stated as follow: find a
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minimum-size subset (i.e. separator) of vertices whose removal
leads to a graph where the size of largest connected component
is less than or equal to p. The p-separator problem has been
shown to be NP-hard in general [2]. Ben-Ameur et al. [15] have
shown that it can be solved in polynomial time for a certain class
of graphs. They also presented approximation algorithms.

By adding to the p-separator problem the additional con-
straint that the size of the separator has to be at most k and
varying the bound p over its possible values, one can solve our
min-max component problem. On the other hand, by solving
the min-max component problem for different value of the size
of the separator (k), on can find a solution to the p-separator
problem. As a consequence, the min-max component problem is
also NP-hard in general.

In a recent paper, Chen and Hero [17] consider the same min-
max component problem. They relate the optimization problem
to the spectrum of the graph by showing that minimizing the
largest component of a graph (by removing a set of nodes) is
equivalent to finding a set of sparse orthogonal vectors that
span the nullspace of the associated graph Laplacian matrix.
Although a greedy algorithm exists to compute such a sparse
orthogonal set, finding the best set is of combinatorial order
(Z) Chen and Hero propose an approximation algorithm that
iteratively chooses a node to remove by first finding a Fiedler
(edge) cut [18] of the largest component and then chooses a
vertex incident to the cut whose removal minimizes the size of
the resulting largest component.

Unfortunately, for networks with a large number of nodes,
such as the ones in this paper, Chen-Hero’s algorithm has a con-
siderable execution time. This is not surprising as the algorithm
requires an iterative computation of the Fiedler vector [19] of
the largest component. The Fiedler vector is the eigenvector
associated with the second smallest eigenvalue of the Laplacian
matrix (also known as the algebraic connectivity) of the graph.
Its computation involves solving a large eigenvalue problem
which is O(r?) [20] and can be computationally very expensive
for large graphs. Several algorithms have been proposed for
computing the Fiedler vector in a parallel setting [21], or finding
an approximation of it [22]. However, the problem remains
complex.

Chen and Hero’s [17] algorithm belongs to a family of al-
gorithms that uses features of the graph spectrum and are some-
times referred as spectral-based approaches. Another spectral-
based algorithm is proposed by Estrada and Hatano [23]. Here,
the proposed heuristic is based on the observation that nodes that
correspond to entries of the Fiedler vector with a value close to
zero do not strongly belong to any connected component; they
are located between the components. As such, by iteratively re-
moving these nodes from the largest component, one can derive
a vertex separation of the graph.

Many other spectral-based algorithms have been proposed
to solve closely related problems such as graph partitioning [18]
[24], [25], [26]. In general, the advantage of these algorithms
is that they provide a performance guarantee [26], and work
relatively well for small size graphs and graphs with special

properties [26]. However, for large graphs, the task of computing
the eigenvalues and eigenvectors is often too costly and not
competitive [27].

The vertex separator problem [10], [11], [12] is another
closely related problem that has received some interest in the
literature. Here, the aim is to remove a minimum-size subset of
vertices such that each connected component in the remaining
graph has a size less than «|V| (for a fixed o < 1). Itis a
special case of the p-separator problem where the graph is to be
partitioned in three subgraphs: the separator, and two subgraphs,
each of size less than o|V/|.

An exact solution of the vertex separator problem can im-
plemented by using the algorithm by Chen and Liang [28] that
enumerates all minimal separators of the graph. A minimal
separator is one that does not contain another separator. Once
all minimal separators are enumerated, we just need to choose
one that satisfies the constraints. If none of the minimum sepa-
rators satisfy the constraints, one can search for an approximate
solution by taking unions. This approach is clearly not scal-
able because the number of minimal separators is potentially
exponential.

Another exact algorithm for solving the vertex separator
problem can be found in Didi Biha and Meurs [29]. Their
solution is based on the polyhedral formulation by de Souza and
Balas [10] who cast the problem as a mixed integer program
(MIP). They then relax the MIP to obtain a linear program (LP)
whose constraints define a polyhedron. In a companion paper
[11], de Souza and Balas use this LP relaxation to propose a
branch-and-cut algorithm by introducing cutting plan for the
polyhedron. Didi Biha and Meurs [29] extend this work by
finding a class of new inequalities that form the facets of the
polyhedron. Then, using a natural lower bound, they are able to
compute a solution of the LP in small amount of time without
using branch-and-cut methods. Unfortunately, this approach
does not give any guarantee and the worst case complexity for
solving an LP is exponential [30].

Several other heuristics can be found in the literature that
attempt to separate a graph using different criterion. Tong et al.
[6] study the problem of removing a set of nodes to minimize
the largest eigenvalue of the resulting graph. They propose a
greedy approach that iteratively selects the current node with
highest eigen-drop as the one to be removed next. Not only
does this algorithm suffer from the limitations of spectral-based
methods (it is one), a quick test has shown that it performs
poorly in our framework. The heuristic proposed by Schneider
et al. [31] separates the graph by iteratively removing the node
with highest betweenness centrality. The betweenness centrality
of a node is defined as fraction of shortest paths between all pairs
of nodes going through it. A fast algorithm has been proposed
by Brandes [32] that runs in O(nm) and requires storage space
of order O(n+ m). Our tests on smaller graphs have shown that
in general this algorithm perform less optimally compared to
the heuristic employed in this paper.
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6. Conclusion

The NP-complete problem of finding an optimal vertex based
graph separator appears in a wide range of contexts. A number
of excellent approximations to this problem exist, but do not
scale well past graphs of several thousand nodes. For larger
graphs, the heuristic of removing the highest-degree node has
been previously proposed elsewhere, and our results show that
for several classes of graphs it obtains good cuts, however the
quadratic scaling of the naive implementation renders it difficult
to use for very large graphs. One may approximate this high-
degree heuristic by not recalculating the node degrees following
vertex removal (the “static degree” or SD method), however
we show that this often, but not always, significantly damages
the quality of the cut. In this work, we present an algorithm
with both linear time and memory complexity for iteratively
removing the highest-degree node from a graph that obtains the
separator quality provided by the full quadratic implementation.
We may thus obtain good separators on graphs of tens of millions
of nodes quickly and efficiently.
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